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Gaussian Mixture Model 
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Abstract—For the probabilistic data analysis generally mixture models, graphical models, Markov random fields and hidden Markov 
models are used. In the above models for density estimation via Gaussian mixture modeling has been successfully applied to image/video 
segmentation, speech processing and other fields relevant to clustering analysis and Probability density function (PDF) modeling. Finite 
Gaussian mixture model is usually used in practice and the selection of number of mixture components is a significant problem in its 
application. In this paper a modified Gaussian mixture model (MGMM) presented which is based on Markov random field (MRF) and a 
dependable spatial constraint with EM (Expectation -Maximization) was proposed in order to enhance the segmentation performance. In 
this method making the M step of the expectation maximization (EM) algorithm cannot be directly applied to the prior distribution for 
maximization of the log likelihood with respect to the corresponding parameters, the proposed method will results fast and accuracy.  

Index Terms—  MGMM, Probability Density Function, Clustering, Log-likely hood, MRF Distribution, Similarity. 
 

1. INTRODUCTION 

For the video segmentation, first the video converted in to 
frames or images and it is the partition of image pixels into 
non-overlap clusters containing each pixel with similar 
attributes is the called segmentation [1]. Image 
segmentation is an initial step to understanding an image 
and it is a one of important technology for image 
processing for many applications such as identifying 
objects in a scene for object-based measurements like size 
and shape recognizing objects in a moving scene. There are 
so many methods have been presented to deal with image 
segmentation. Although these methods may seem quite 
different, most of them belong to two categories, one based 
on clustering pixels and the other edge detection. In both 
categories the model based (clustering) segmentation 
algorithms will be more efficient compared to non-
parametric methods. The application of clustering methods 
to image segmentation has the particular characteristic that 
spatial information should be taken into account. That is, 
apart from the intensity values, the pixel location must also 
be used to determine the cluster to which each pixel is 
assigned. In recent years, many clustering algorithms such 
as hierarchical clustering, partition based clustering; 
mixture densities-based clustering and search techniques-
based clustering, have been applied to image segmentation 
problem and achieved the satisfying results [2-5].  
 

 
In this paper, we focused on those clustering algorithms 

based on Gaussian Mixture Model (GMM) [6]. Which is a 
popular clustering method because of its simple 
mathematical form and the closed form expressions for its 
parameters, but it produces an unacceptable segmentation 
on noise-corrupted image due to no consideration of spatial   
information. To overcome this drawback, modified 
algorithm has been proposed by embedding Markov 
Random Field (MRF) spatial dependence into GMM. The 
Expectation-Maximization framework constitutes an 
efficient method for GMM training based on likelihood 
maximization Following this formulation, a likelihood term 
which is based exclusively on the data captures the pixel 
intensity information, while a prior biasing term that uses a 
Markov Random Field (MRF) captures the spatial location 
information. In abovementioned models based MRF; the M-
step of the EM algorithm cannot be directly applied for the 
maximization of the log-likelihood with respect to the 
parameters. In our proposed method, we can directly apply 
the EM algorithm to optimize the parameters, which makes 
it simpler. Finally, the proposed model is quite rugged with 
respect to noise, more accurate and effective as compared to 
other GMM based methods. 

The rest of this paper is organized as follows: In section 
2 we describe The GMM Formulation based on MRF. In 
section 3 we present our modified method. In section 4 
provide experimental results and finally in section 5 explain 
conclusion.  

 
2. THE GMM FORMULATION BASED ON MRF 

 
The value of a pixel in an image (i.e. the intensity or the 
color) can be taking as a random variable. Since every 
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random variable has a probability distribution then pixel 
values also have probability distribution. The Gaussian 
mixture distribution is a good probability distribution for 
pixel values of an image. Let xi, i = (1, 2. . . N), denote an 
observation at the ith pixel of an image with dimension D. 
The neighborhood of the ith pixel is presented by ∂i. Labels 
are denoted by (1, 2. . . K). in order to partition an image 
consisting of N pixels into K labels, GMM [10] assumes that 
each observation xi is considered independent of the label j. 
The probability density function f (xi| П, Θ) at an 
observation xi is given by 

 
𝑓𝑓(𝑥𝑥𝑖𝑖|Π, Θ) = ∑ 𝜋𝜋𝑖𝑖𝑖𝑖 Φ�𝑥𝑥𝑖𝑖�Θ𝑖𝑖 �      𝐾𝐾

𝑖𝑖=1       (1) 
 
where П = {π ij}, i = (1, 2, . . . , N),  j = (1, 2, . . . , K) is the set of 
prior distributions modeling the probability that pixel xi is 
in label  j, which satisfies the constraints  
 
0 ≤ 𝜋𝜋𝑖𝑖𝑖𝑖 ≤ 1 𝑎𝑎𝑎𝑎𝑎𝑎 ∑ 𝜋𝜋𝑖𝑖𝑖𝑖𝐾𝐾

𝑖𝑖=1 = 1             (2) 
 
Where Φ (xi | Θ j) is the Gaussian distribution, called a 
component of the mixture. Each Gaussian distribution can 
be written in the form 
 
Φ�𝑥𝑥𝑖𝑖�Θ𝑖𝑖 � = 1

(2𝜋𝜋)
𝑎𝑎
2 �Σ𝑖𝑖 �

1
2

 𝑒𝑒𝑥𝑥𝑒𝑒 �− 1
2
�𝑥𝑥𝑖𝑖 − 𝜇𝜇𝑖𝑖 �

𝑇𝑇Σ𝑖𝑖
−1�𝑥𝑥𝑖𝑖 − 𝜇𝜇𝑖𝑖 ��  (3) 

 
Where j = {μ j, Σ j}, j = (1, 2. . . K). The D-dimensional vector 
μj is the mean, the D × D matrix j is the covariance, and | Σ 
j| denotes the determinant of Σ j. Note that the observation 
xi in (1) is modeled as statistically independent, the joint 
conditional density of the data set X = (x1, x2, . . . ,xN) can be 
modeled as 
 
𝑒𝑒(𝑋𝑋|Π, Θ) = ∏ 𝑓𝑓(𝑥𝑥𝑖𝑖|Π, Θ) = ∏ ∑ 𝜋𝜋𝑖𝑖𝑖𝑖 Φ�𝑥𝑥𝑖𝑖�Θ𝑖𝑖 �𝐾𝐾

𝑖𝑖=1
𝑁𝑁
𝑖𝑖=1

𝑁𝑁
𝑖𝑖=1  (4) 

 
From the observation xi is considered to be independent 
given the pixel label, the spatial correlation between the 
neighboring pixels is not taken into account. As a result, the 
segmented image is sensitive to noise and illumination [10]. 
To overcome this problem, MRF distribution [9] is applied 
to incorporate the spatial correlation among label values  
 
𝑒𝑒(Π) = 𝑍𝑍−1𝑒𝑒𝑥𝑥𝑒𝑒 �− 1

𝑇𝑇
𝑈𝑈(Π)�          (5) 

 
Where Z is a normalizing constant, T is a temperature 
constant, and U (П) is the smoothing prior. The posterior 
probability density function given by Bayes’ rules can be 
written as  
 
𝑒𝑒(Π, Θ|𝑋𝑋) ∝ 𝑒𝑒(𝑋𝑋|Π, Θ)𝑒𝑒(Π)         (6) 
 
By using (6), the log-likelihood function can be derived as 

  
𝐿𝐿(Π, Θ|X) =  𝑙𝑙𝑙𝑙𝑙𝑙�𝑒𝑒(Π, Θ|X)� 

= �𝑙𝑙𝑙𝑙𝑙𝑙 ��𝜋𝜋𝑖𝑖𝑖𝑖 Φ�𝑥𝑥𝑖𝑖|Θj�
𝑘𝑘

𝑖𝑖=1

�
𝑁𝑁

𝑖𝑖=1

+ 𝑙𝑙𝑙𝑙𝑙𝑙𝑒𝑒(Π) 

= ∑ 𝑙𝑙𝑙𝑙𝑙𝑙�∑ 𝜋𝜋𝑖𝑖𝑖𝑖 Φ�𝑥𝑥𝑖𝑖|Θj�𝑘𝑘
𝑖𝑖=1 �𝑁𝑁

𝑖𝑖=1 − 𝑙𝑙𝑙𝑙𝑙𝑙𝑍𝑍 − 1
𝑇𝑇
𝑈𝑈(Π)    (7) 

 
Depending on the type of energy U (П) selected in (7), from 
the Bayesian kinds of model [9], [14], the function U(П) is 
chosen to incorporate the spatial correlation as 
 
𝑈𝑈(Π) = ∑ ∑ 𝛼𝛼𝑖𝑖𝑖𝑖 𝜋𝜋𝑖𝑖𝑖𝑖 + ∑ ∑ ∑ 𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖 𝜋𝜋𝑖𝑖𝑖𝑖 𝜋𝜋𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚 𝜕𝜕𝑖𝑖

𝐾𝐾
𝑖𝑖=1

𝑁𝑁
𝑖𝑖=1

𝐾𝐾
𝑖𝑖=1

𝑁𝑁
𝑖𝑖=1   (8) 

 
Where α ij  and β ijm form the parameter set. In this model, in 
order to maximize the log-likelihood function, we need to 
optimize many parameters and disadvantage is that its 
segmentation is not sufficiently robust to noise. Other 
mixture models based on MRF have been successfully 
applied to image segmentation [10], [11] and different ways 
are adopted to select the energy U (П). From [10], Z and T 
in (7) are set to one, and U (П) is given by 
 
𝑈𝑈(Π) = 𝛽𝛽 ∑ ∑ ∑ �𝜋𝜋𝑖𝑖𝑖𝑖 − 𝜋𝜋𝑖𝑖𝑖𝑖 �

2𝐾𝐾
𝑖𝑖=1𝑖𝑖𝑚𝑚 𝜕𝜕𝑖𝑖

𝑁𝑁
𝑖𝑖=1        (9) 

 
While in an another MRF model-based method [30], U (П) 
is given by  
 

𝑈𝑈(Π) = 𝛽𝛽 ∑ ∑ �1 + �∑ �𝜋𝜋𝑖𝑖𝑖𝑖 − 𝜋𝜋𝑖𝑖𝑖𝑖 �
2𝐾𝐾

𝑖𝑖=1 �
−1
�
−1

𝑖𝑖𝑚𝑚 𝜕𝜕𝑖𝑖
𝑁𝑁
𝑖𝑖=1    (10) 

Where β is constant value in (9) and (10). 
 In [31], spatial information is taken into account and U (П) 
is given as  
 

𝑈𝑈(Π) = ∑ ∑ ∑ �1
2

logβjs
2 − 1

2

�∑ �πij−πmj �m ϵ∂i �
2

βjs
2 �S

s=1
K
j=1

N
i=1    (11) 

 
Where S is the total number of the considered directions. In 
the general case, S is equal to four (S = 4: horizontal, 
vertical, and two diagonal directions). β js in (11) is a 
variable parameter. As shown in (9)–(11), the incorporation 
of local information adds complexity.  

In order to maximize the likelihood in (7) with respect to 
the parameters and, an iterative EM algorithm can be 
applied. However, due to the complexity of the log-
likelihood function, the M-step of EM algorithm cannot be 
applied directly to the prior distribution πij. Note that the 
prior distribution πij should satisfy the constraints in (2). 
Thus, the resulting algorithms are computationally complex 
and utilize large amounts of computational power to solve 
the constrained optimization problem of the prior 
distribution πij.  

 
3. PROPOSED METHODOLOGY 
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Various mixture models differ based on the way they 
derive the strength of the smoothing prior U (П). In [11], 
given in (8), the smoothing prior U (П) has a simple form, 
thus, it is easy to optimize the parameter set {П, Θ} to 
maximize the log-likelihood function. However, one of its 
main drawbacks is that the segmentation result is not 
robust to noise. Models in [10], [11], represented by (9)–(11), 
make use of a complex smoothing prior. Their primary 
disadvantage lies in its additional training complexity. The 
M-step of the EM algorithm cannot be applied directly to 
the prior distribution, which, therefore, corresponds to an 
increase in the algorithms complexity. In order to overcome 
these disadvantages, we introduce a novel factor C ij  
defined as  
 
𝐶𝐶𝑖𝑖𝑖𝑖

(𝑡𝑡) =  𝑒𝑒𝑥𝑥𝑒𝑒 � 𝛽𝛽
2𝑁𝑁𝑖𝑖

∑ �𝑧𝑧𝑖𝑖𝑖𝑖
(𝑡𝑡) + 𝜋𝜋𝑖𝑖𝑖𝑖

(𝑡𝑡)�mϵ ∂i �        (12) 

 
Where zmj is the posterior probability and β is the 

temperature value that controls the smoothing prior. In this 
paper, it has been set to 12 (β = 12). ∂i is the neighborhood 
of the ith pixel, including itself. A square window of size 5 × 
5 is used in this paper. Ni is the number of neighboring 
pixels around the pixel xi in this window (Ni = 25). By 
taking a closer look at (12), it can be visualized that the 
factor Cij is defined as a multiplication of both posterior 
probabilities and prior distributions. Based on a fact that 
neighboring pixels in an image are similar in some sense, 
we can use this kind of relationship by replacing each 
posterior probability zij and posterior probability π ij  in an 
image with the average value of their neighbors, including 
themselves. Note that the factor C ij  is only dependent on 
the value of the priors and posteriors at the previous step 
(at the t step). It plays a role as a linear filter for smoothing 
and restoring images corrupted by noise. For this reason, 
the main advantage of Cij is the ease of implementation and 
incorporation of the spatial relationships among 
neighboring pixels in a simpler metric. Next, we propose a 
novel approach to incorporate the spatial information into 
the smoothing prior. The new smoothing prior U (П) is 
given by 

 
𝑈𝑈(Π) = −∑ ∑ 𝐶𝐶𝑖𝑖𝑖𝑖

(𝑡𝑡)𝑙𝑙𝑙𝑙𝑙𝑙𝜋𝜋𝑖𝑖𝑖𝑖
(𝑡𝑡+1)K

j=1
N
i=1         (13) 

 
The intuition of (13) that the derivative of the smoothing 

prior U(П)  with respect to prior distribution π ij  at the 
current step (at the t+1 step) is only dependent on the term 
π ij  (t+1). For this reason, the M-step of the EM algorithm in 
our method is simple and computationally 
efficient. The MRF distribution p (П) in (5) is given by 

 
𝑒𝑒(Π) = 𝑍𝑍−1𝑒𝑒𝑥𝑥𝑒𝑒 �1

𝑇𝑇
∑ ∑ 𝐺𝐺𝑖𝑖𝑖𝑖

(𝑡𝑡)𝑙𝑙𝑙𝑙𝑙𝑙𝜋𝜋𝑖𝑖𝑖𝑖
(𝑡𝑡+1)K

j=1
N
i=1 �      (14) 

 
Given the MRF distribution p(П) , the log-likelihood 
function in (7) is written in the form as 
 
𝐿𝐿(Π, Θ|X) = ∑ 𝑙𝑙𝑙𝑙𝑙𝑙�∑ 𝜋𝜋𝑖𝑖𝑖𝑖

(𝑡𝑡+1)Φ�𝑥𝑥𝑖𝑖|Θ𝑖𝑖
(𝑡𝑡+1)�𝐾𝐾

𝑖𝑖=1 � − 𝑙𝑙𝑙𝑙𝑙𝑙𝑍𝑍 +𝑁𝑁
𝑖𝑖=1

1𝑇𝑇i=1Nj=1K𝐺𝐺𝑖𝑖𝑖𝑖(𝑡𝑡)𝑙𝑙𝑙𝑙𝑙𝑙𝜋𝜋𝑖𝑖𝑖𝑖(𝑡𝑡+1)          
 (15)  
Application of the complete data condition in [10], 
maximizing the log-likelihood function L(П,Θ |X) in (15) 
will lead to an increase in the value of the objective function  
 
𝐽𝐽(П,𝛩𝛩 |𝑋𝑋)  = 𝐽𝐽(Π, Θ|X) = ∑ ∑ 𝑧𝑧𝑖𝑖𝑖𝑖

(𝑡𝑡)𝐾𝐾
𝑖𝑖=1 �log 𝜋𝜋𝑖𝑖𝑖𝑖

(𝑡𝑡+1) +𝑁𝑁
𝑖𝑖=1

log Φ𝑥𝑥𝑖𝑖|Θ𝑖𝑖𝑡𝑡+1−𝑙𝑙𝑙𝑙𝑙𝑙𝑍𝑍+1𝑇𝑇i=1Nj=1K𝐺𝐺𝑖𝑖𝑖𝑖(𝑡𝑡)𝑙𝑙𝑙𝑙𝑙𝑙𝜋𝜋𝑖𝑖𝑖𝑖(𝑡𝑡+1) 
 (16)  
The conditional expectation values zij of the hidden 
variables can be computed as follows:  
 

𝑧𝑧𝑖𝑖𝑖𝑖
(𝑡𝑡) =

𝜋𝜋𝑖𝑖𝑖𝑖
(𝑡𝑡)Φ�𝑥𝑥𝑖𝑖|Θ𝑖𝑖

(𝑡𝑡)�

∑ 𝜋𝜋𝑖𝑖𝑖𝑖
(𝑡𝑡)K

j=1 Φ�𝑥𝑥𝑖𝑖|Θ𝑖𝑖
(𝑡𝑡)�

           (17) 

 
The next objective is to optimize the parameter set {П, Θ} 

in order to maximize the objective function J(П,Θ |X) in 
(16). Similar to the MRF-based methods [10], [11], Z and T 
in (16) are set proportional to one. From (16), the new 
objective function is given by  

 
𝐽𝐽(Π, Θ|X) = ∑ ∑ 𝑧𝑧𝑖𝑖𝑖𝑖

(𝑡𝑡)𝐾𝐾
𝑖𝑖=1 �log 𝜋𝜋𝑖𝑖𝑖𝑖

(𝑡𝑡+1) + log Φ�𝑥𝑥𝑖𝑖|Θ𝑖𝑖
(𝑡𝑡+1)�� +𝑁𝑁

𝑖𝑖=1

i=1Nj=1K𝐺𝐺𝑖𝑖𝑖𝑖(𝑡𝑡)𝑙𝑙𝑙𝑙𝑙𝑙𝜋𝜋𝑖𝑖𝑖𝑖(𝑡𝑡+1)         
 (18)  
From (3), the function in (18) can be rewritten as 
 
𝐽𝐽(Π, Θ|X) = ∑ ∑ 𝑧𝑧𝑖𝑖𝑖𝑖

(𝑡𝑡) �log𝜋𝜋𝑖𝑖𝑖𝑖
(𝑡𝑡+1) − 𝐷𝐷

2
log(2𝜋𝜋) −𝐾𝐾

𝑖𝑖=1
𝑁𝑁
𝑖𝑖=1

12𝑙𝑙𝑙𝑙𝑙𝑙𝛴𝛴𝑖𝑖𝑡𝑡+1  + 
𝑖𝑖=1𝑁𝑁𝑖𝑖=1𝐾𝐾𝑧𝑧𝑖𝑖𝑖𝑖(𝑡𝑡)−12𝑥𝑥𝑖𝑖−𝜇𝜇𝑖𝑖𝑡𝑡+1𝑇𝑇𝛴𝛴𝑖𝑖−1(𝑡𝑡+1)𝑥𝑥𝑖𝑖−𝜇𝜇𝑖𝑖𝑡𝑡+1+𝑖𝑖=1𝑁𝑁𝑖𝑖=1
𝐾𝐾𝐺𝐺𝑖𝑖𝑖𝑖𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙𝜋𝜋𝑖𝑖𝑖𝑖𝑡𝑡+1          (19)   
 
To maximize this function, the EM algorithm [10], [11], [12], 
[13] is applied. Let us now consider the derivation of the 
function J (П, Θ |X) with the means μj at the (t+1) iteration 
step. We have 
 
𝜕𝜕𝐽𝐽

𝜕𝜕𝜇𝜇𝑖𝑖
(𝑡𝑡+1) = ∑ 𝑧𝑧𝑖𝑖𝑖𝑖

(𝑡𝑡) �− 1
2

(2𝛴𝛴𝑖𝑖
−1(𝑡𝑡+1)𝜇𝜇𝑖𝑖

(𝑡𝑡+1)− 2𝛴𝛴𝑖𝑖
−1(𝑡𝑡+1)(𝑥𝑥𝑖𝑖))�𝑁𝑁

𝑖𝑖=1  (20) 

 
The solution of ∂J/∂μj = 0 yields the minimize of μj at the 
(t+1) step 
 

𝜇𝜇𝑖𝑖
(𝑡𝑡+1) =

∑ 𝑧𝑧𝑖𝑖𝑖𝑖
(𝑡𝑡)𝑥𝑥𝑖𝑖

𝑁𝑁
𝑖𝑖=1

∑ 𝑧𝑧𝑖𝑖𝑖𝑖
(𝑡𝑡)𝑁𝑁

𝑖𝑖=1
            (21) 
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Thus, setting the derivative of the function in (18) with 
respect to 𝛴𝛴𝑖𝑖−1at the (t+1) iteration step, we have 
 

𝜕𝜕𝐽𝐽

𝜕𝜕𝛴𝛴𝑖𝑖
−1(𝑡𝑡+1) = ∑ 𝑧𝑧𝑖𝑖𝑖𝑖

(𝑡𝑡) �1
2
𝛴𝛴𝑖𝑖
−1(𝑡𝑡+1) − �1

2
�𝑥𝑥𝑖𝑖 − 𝜇𝜇𝑖𝑖

(𝑡𝑡+1)�
𝑇𝑇
�𝑥𝑥𝑖𝑖 −𝑁𝑁

𝑖𝑖=1

𝜇𝜇𝑖𝑖𝑡𝑡+1              (22) 

 
 

𝛴𝛴𝑖𝑖
−1(𝑡𝑡+1) =

∑ 𝑧𝑧𝑖𝑖𝑖𝑖
(𝑡𝑡)�𝑥𝑥𝑖𝑖−𝜇𝜇𝑖𝑖

(𝑡𝑡+1)�
𝑇𝑇
�𝑥𝑥𝑖𝑖−𝜇𝜇𝑖𝑖

(𝑡𝑡+1)�𝑁𝑁
𝑖𝑖=1

∑ 𝑧𝑧𝑖𝑖𝑖𝑖
(𝑡𝑡)𝑁𝑁

𝑖𝑖=1
      (23) 

 
An important consideration is that the prior distribution 
should satisfy the constraints in (2). In order to enforce 
these constraints, we use the Lagrange’s multiplier ηi for 
each data point 
 
𝜕𝜕𝐽𝐽

𝜕𝜕𝜋𝜋𝑖𝑖𝑖𝑖
(𝑡𝑡+1) �𝐽𝐽 − ∑ 𝜂𝜂𝑖𝑖�∑ 𝜋𝜋𝑖𝑖𝑖𝑖

(𝑡𝑡+1) − 1𝐾𝐾
𝑖𝑖=1 �𝑁𝑁

𝑖𝑖=1 � = 0     (24) 

 
Equation (24) can be rewritten in the following form: 
 
𝑧𝑧𝑖𝑖𝑖𝑖

(𝑡𝑡)

𝜋𝜋𝑖𝑖𝑖𝑖
(𝑡𝑡+1) +

𝐶𝐶𝑖𝑖𝑖𝑖
(𝑡𝑡)

𝜋𝜋𝑖𝑖𝑖𝑖
(𝑡𝑡+1) − 𝜂𝜂𝑖𝑖 = 0          (25) 

 
The constraint  ∑ 𝜋𝜋𝑖𝑖𝑖𝑖𝐾𝐾

𝑖𝑖=1 = 1  enables the Lagrange 
multiplier ηi to satisfy the following condition: 
 
𝜂𝜂𝑖𝑖 = 1 + ∑ 𝐶𝐶𝑖𝑖𝑖𝑖

(𝑡𝑡)𝐾𝐾
𝑖𝑖=1             (26) 

 
The necessary condition for determining the prior 
distribution πij at the (t+1) iteration step becomes 
 

𝜋𝜋𝑖𝑖𝑖𝑖
(𝑡𝑡+1) =

𝑧𝑧𝑖𝑖𝑖𝑖
(𝑡𝑡)+𝐶𝐶𝑖𝑖𝑖𝑖

(𝑡𝑡)

∑ �𝑧𝑧𝑖𝑖𝑖𝑖
(𝑡𝑡)+𝐶𝐶𝑖𝑖𝑖𝑖

(𝑡𝑡)�𝐾𝐾
𝑘𝑘=1

           (27) 

 
So far, the discussion has focused on estimating {П, Θ} of 
the model in order to assign a label Σ j to the pixel xi. The 
various steps of the proposed mixture model incorporating 
spatial information based on MRF can be summarized as 
follows. 
 
Step 1: Initialize the parameters {П, Θ}: the means μj, 
covariance values Σj, and prior distributions π ij. 
Step 2: E step. a) Evaluate the values zij in (17) using the 
current parameter values. b) Update the factor Cij by using 
(12). 
Step 3: M step: Re-estimate the parameters {П, Θ}. a) Update 
the means μj by using (21). b) Update covariance values Σ j 
by using (23). c) Update prior distributions π ij  by using 
(27). 

Step 4: Evaluate the log-likelihood in (14) and check the 
convergence of either the log-likelihood function or the 
parameter values. If the convergence criterion is not 
satisfied, then go to step 2. Once the parameter-learning 
phase is complete, every pixel xi is assigned to the label 
with the largest posterior probability zij 
 
Xi ∈ Ω j: IF zij ≥ zik ; j, k = (1, 2... K).      
 (28) 
 
 

4. EXPERIMENTAL RESULTS 
 

For the performance analysis fist we have to find out 
specificity analysis with respect to the ground truth image 
depend on True-positive (tp) pixels, True-negative pixels 
(tn), False-positive pixels (fp), and False-negative pixels (fn). 
True-positive pixels (tp) are the correctly detected pixels by 
the algorithm of the moving object. By using sensitivity 
values we can find out the following parameters. 

The relevant pixels of the detected object can be found 
out by using recall formula it is given below: 
 
𝑅𝑅𝑒𝑒𝑅𝑅𝑎𝑎𝑙𝑙𝑙𝑙 =  𝑡𝑡𝑒𝑒

𝑡𝑡𝑒𝑒+𝑡𝑡𝑎𝑎
                               (29) 

 
 Irrelevant pixels can be determined by using precision, 
the formula for precision is given below: 
 
Precision =  tp

tp +fp
                     (30) 

 
Similarity =  tp

tp +fp +fn
                                         (31) 

 
 False Measure (FM): 2 Recall ∗Precision

Recall +Precision
      (32) 

 
Percentage of correct classification (PCC): 
 
PCC =  tp +tn

tp +fp +fn +tn
            (33) 

 
True positive rate and True negative Rate: 
 
Precision =  tp

tp +fn
                                                               (34) 

 
𝑅𝑅𝑒𝑒𝑅𝑅𝑎𝑎𝑙𝑙𝑙𝑙 = 𝑓𝑓𝑒𝑒

𝑓𝑓𝑒𝑒+𝑡𝑡𝑎𝑎
                                                                 (35) 

 
Table 1 shows the performance of algorithm  
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Video’s Sample frame Ground Truth 
Motion Object 

Segmentation using 
GMM 

Car Traffic 

   

Closed Hall 

   
 

Fig.1. Motion mask generated by the proposed method 
 
 

Sequences Evaluation MGMM 

Traffic Recall 0.9039 

Precision 0.5316 

Similarity 0.502 

FM 0.668 

PCC 0.9773 

TRP 0.9039 

FRP 0.8892 

Hall Recall 0.5384 

Precision 0.6356 

Similarity 0.4155 

FM 0.5744 

PCC 0.9752 

TRP 0.5384 

FRP 0.4046 

 
TABLE 1  

PERFORMANCE ANALYSIS WITH DEFENDING VIDEOS 
 

5. CONCLUSION 

In this paper we presented a new mixture model for image 
segmentation that incorporated the spatial relationships 
based on MRF. The proposed method directly applied the  

 

EM algorithm to optimize the parameters by making it 
simple, fast, and easy to implement and it is applied real 
world  videos, thereby producing excellent performance in 
noisy conditions. 
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